Richard Lounsbery Award

The Richard Lounsbery Award was established by Vera Lounsbery in memory of her husband, Richard Lounsbery. The prize is given in alternate years to young French and American scientists (aged 50 and below) by the U.S. National Academy of Sciences and the French Academy of Sciences in recognition of extraordinary scientific achievement in biology and medicine. The monetary prize is intended to stimulate research and to encourage reciprocal scientific exchanges between the United States and France. Additionally, the prize includes a sum for the American recipient to visit a laboratory or research institution in France, and the French recipient to do the same in the United States.

List of Recipients:

Pardis Christine Sabeti (2017)
For her groundbreaking contributions to genetics and global health, including development of new methods to study evolutionary selection in humans and viruses, creation of new collaborative models for combatting emerging diseases across disciplinary and national borders, and leadership of global efforts to increase data sharing in pandemics including Ebola and Lassa Fever.

Bruno Klaholz (2016)
For his work in Structural Biology (by X-ray diffraction and cryo-electron microscopy methods) on the regulation of gene expression at both the transcriptional level (structures of the nuclear receptors to retinoic acid and vitamin D) and the protein translation level (initiation and termination complexes, and the structure of the human ribosome).

Hopi Hoekstra (2015)
For her work probing the molecular basis of how adaptation to novel selective pressures establishes and sustains diversity during evolution.  Her tour-de-force transdisciplinary studies have illuminated a fundamental mechanism by which complex behaviors can evolve through multiple genetic changes each affecting distinct behavioral modules.

Dr. Frédéric Saudou (2014)
For his work in the understanding of molecular and cellular mechanisms causing Huntington's disease, a very severe neurodegenerative disorder. Dr. Saudou's finding is a seminal discovery in the understanding of the disease and an important step towards a future therapeutic strategy.

Karl Diesseroth (2013)
For his seminal work in the field of optogenetics, in which insertion of a single bacterial protein into a neuron allows the cell to be controlled with light. Optogenetics has been successfully utilized in landmark studies of human diseases, most noticeably Parkinson's Disease.

Olivier Pourquié (2012)
For his work in embryonic patterning in vertebrates and particularly in the genetic and developmental mechanisms that control segmentation.

Bonnie L. Bassler (2011)
For her pioneering discoveries of the universal use
of chemical communication among bacteria and the elucidation of structural and regulatory mechanisms controlling bacterial assemblies.

Gérard Karsenty (2010)
For his work on the molecular mechanisms that underlie the formation and the remodeling of bone.

Cornelia I. Bargmann (2009)
For her extraordinarily inventive and successful use of molecular and classical genetics to probe the individual nerve cell basis of behavior in C. elegans.

Jean-Laurent Casanova (2008)
For his contributions to the understanding the genetic basis of the predisposition to viral and bacterial diseases of childhood, which have important clinical implications for the diagnostic and management of infectious diseases.

Xiaodong Wang (2007)
For his pioneering biochemical studies on apoptosis, which have elucidated a molecular pathway leading into and out of the mitochondrion and to the nucleus.

Catherine Dulac (2006)
For her major contributions in the perception and behavioral translation of pheromones in mammals.

John Kuriyan (2005)
For his critical role in revealing the structural mechanisms underlying processivity in DNA replication and the regulation of tyrosine kinases and their interacting target proteins.

Brigitte Kieffer (2004)
For her pioneering work on the molecular neurobiology of opioid-controlled behaviors, the results of which have very important implications for the treatment of pain, drug abuse, and emotional disorders.

Carol W. Greider (2003)
For her pioneering biochemical and genetic studies of telomerase, the enzyme that maintains the ends of chromosomes in eukaryotic cells. *Carol Greider received the Nobel Prize in 2009.

Denis Le Bihan (2002)
For his work on the invention and development of nuclear magnetic resonance imaging of brain diffusion and perfusion. The method he developed permits in vivo mapping of nerve fiber bundles and has multiple applications in both medical pathology and cognitive science fields.

Elaine Fuchs (2001)
For her fundamental insights into structure and function of cytoskeletal proteins and the relation of these proteins to human genetic diseases.

Miroslav Radman (2000)
For his contribution to the discovery of the molecular mechanisms implicated in the replication and repair of DNA, in particular, the discovery of a key enzyme of the DNA repair mechanism.

Elliot M. Meyerowitz (1999)
For his pioneering contributions to the molecular genetics of plant architecture, which have practical implications for agriculture.

Pascale Cossart (1998)
For her fundamental discoveries in microbiology dealing with mechanisms of bacterial entry and intracellular host motility.

James E. Rothman (1997)
For his dissection of the biochemical mechanisms by which proteins are transferred from one cellular compartment to another and to the outside world. These mechanisms are important in neurotransmission, tissue biogenesis, and hormonal secretion.

Daniel Louvard and Jacques Pouysségur (1996)
For their contributions to the study of the regulation of cell division and differentiation.

Douglas A. Melton (1995)
For showing how cells and tissues differentiate during vertebrate development through studies on localized mRNAs in eggs and the genes that induce mesoderm and neural tissue.

Jean Louis Mandel (1994)
For his work in human genetics and in particular for his discovery of the mutation of fragile X. This new type of mutation has now been found at the origin of the diseases.

Stanley B. Prusiner and Bert Vogelstein (1993)
For their distinct and exciting discoveries about the pathogenesis of neurodegenerative and malignant diseases. This award is given as a celebration of the power of modern molecular medicine.  *Stanley Prusiner received the Nobel Prize in 1997. 

Philippe Ascher and Henri Korn (1992)
For their discoveries of the mechanisms of synaptic transmission. Philippe Asher furthered knowledge regarding the properties of glutamate receptors which play an important role in trials, and Henri Korn brought to light the elementary liberation of neurotransmitter in quanta form in the central nervous system of vertebrates.

Marc W. Kirschner (1991)
For elucidating key steps in the cell cycle, chromosome movement, cell cycle timing, nucleus breakdown and reformation, and microtubule control of cell polarity and mitosis.

Harold Weintraub (1991)
For elucidating a molecular mechanism by which a single regulatory gene can lead to a program of cell differentiation.

Jean Rosa (1990)
For his contributions, which have opened a new road in the control of oxygen transport in the blood and the treatment of the first worldwide genetic plague, drepanocytosis.

Richard Axel (1989)
For his discoveries elucidating gene structure in animal cells. *Richard Axel received the Nobel Prize in 2004. 

François Cuzin (1988)
For his original contributions in the elucidation of the mechanisms involved in malignant cell transformation, in particular, demonstration of the necessary contribution of two oncogenes.

Alfred G. Gilman and Martin Rodbell (1987)
For their discoveries regarding the proteins and mechanisms that mediate cellular responses to the binding of ligands to cell surface receptors. *Both Alfred Gilman and Martin Rodbell received the Nobel Prize in 1994.

André Capron and Jacques Glowinski (1986)
For their fundamental work, which has contributed to the treatment of parasitic and neurological diseases.

Martin Gellert and Thomas Maniatis (1985)
For their seminal contributions to our understanding of the structure and function of DNA, which were essential and fundamental to the development of recombinant DNA techniques.

Maxime Schwartz (1984)
For his genetic and biochemical analysis of the maltose system of E.Coli, which paved the way for the solution of a series of fundamental problems in molecular biology.

Günter Blobel (1983)
For his work in uncovering the molecular interactions that control the traffic of newly synthesized proteins in eukaryotic cells, for his incisive experiments, and for the beauty of the findings by which he established these interactions. *Günter Blobel received the Nobel Prize in 1999.

Pierre Chambon and Jean Pierre Changeux (1982)
For their work on fundamental structures of genetic material and of the nervous system.

Philip Leder (1981)
For his series of notable contributions in molecular genetics, which help to explain the means by which genetic information is organized and used to direct the synthesis of specific cell products. 

François Morel (1980)
For his work on the physiology of the kidney.

Michael S. Brown and Joseph L. Goldstein (1979)
For their work in cholesterol biosynthesis.  *Both Michael Brown and Joseph Goldstein received the Nobel Prize in 1985.

 

 
 
© 2017 Richard Lounsbery Foundation